

32-bit
Microcontrollers

Application Note

Rev. 32075B-AVR-03/08

AVR32007: UC3 C-coding Guidelines for ARM7
Developers

1 Introduction
This document describes differences between the AVR®32 UC3 and ARM7TM CPU
architectures, and gives guidelines on developing applications on the AVR32 UC3
architecture for developers with ARM7 experience. The reader should refer to the
AVR32 Architecture Manual, Application Note AVR32006 “Getting Started with
GCC for AVR32” and datasheets for respective AVR32 microcontrollers for more
information.

2 AVR32007
32075B-AVR-03/08

1.1 Overview of AVR32 UC3 CPU
AVR32 is a new, high-performance 32-bit RISC microprocessor architecture,
designed for cost-sensitive embedded applications, with particular emphasis on low
power consumption and high code-density.

Through a quantitative approach, a large set of industry-recognized benchmarks has
been compiled and analyzed to achieve the best code density in its class. In addition
to lowering the memory requirements, a compact code size also contributes to the
core’s low power characteristics. The processor supports byte and half-word data
types without penalty in code size or performance.

In order to reduce code-size to a minimum, some instructions have multiple
addressing modes. As an example, instructions with immediates often have a
compact format with a smaller immediate, and an extended format with a larger
immediate. In this way, the compiler is able to use the format giving the smallest code
size.

Another feature of the instruction set is that frequently used instructions, like add,
have a compact format with two operands as well as an extended format with three
operands. The larger format increases performance, allowing an addition and a data
move in the same instruction, in a single cycle.

Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program
Counter, the Link Register, and the Stack Pointer. In addition, register R12 is
designed to hold return values from function calls and is used implicitly by some
instructions.

1.2 Overview of the AVR32 MCU bus architecture
AVR32 UC3 MCUs provide an advanced OCD system, no instruction- or data-cache,
and a Memory Protection Unit (MPU).

The CPU has three memory interfaces, one High Speed Bus master for instruction
fetch, one High Speed Bus master for data access, and one High Speed Bus slave
interface allowing other bus masters to access data RAMs internal to the CPU.
Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces
latency and guarantees deterministic timing.

In addition to the increased performance, power consumption is reduced by not
requiring a complete High Speed Bus to access memory. A High Speed Bus slave
interface is provided for other bus masters may access the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed
systems, such as floating-point units and fast GPIO ports. The local bus is able to
transfer data between the CPU and the local bus slave in a single clock cycle. The
local bus has a dedicated memory range allocated to it, and data transfers are
performed using regular load and store instructions.

 AVR32007

Figure 1-1. AVR32 UC3 MCU block diagram.

AVR32UC CPU pipeline

Instruction memory controller

High
Speed

Bus
master

MPU

H
ig

h
S

pe
ed

 B
us

H
ig

h
S

pe
ed

 B
us

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rr
up

t c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave
H

ig
h

S
pe

ed
 B

us

D
at

a
R

A
M

 in
te

rfa
ce

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce

CPU Local
Bus

master

C
P

U
 L

oc
al

 B
us

Data memory controller

1.3 Pipeline Overview
The AVR32 UC3 CPU has three pipeline stages, Instruction Fetch (IF), Instruction
Decode (ID) and Instruction Execute (EX). The EX stage are split into three parallel
subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section and one
load/store (LS) section.

Instructions are issued and complete in order (in-order execution). Certain operations
require several clock cycles to complete, and in this case, the instruction resides in
the ID and EX stages for the required number of clock cycles. Since there are only
three pipeline stages, no internal data forwarding is required, and no data
dependencies can arise in the pipeline.

 3

32075B-AVR-03/08

4 AVR32007

Figure 1-2. AVR32 UC Pipeline.

2 Comparison between AVR32 UC3 and ARM7
The main difference between the AVR32 UC3 CPU and ARM7 is listed in the table
below.

Table 2-1. Comparison between AVR32 UC3 and ARM7
Features AVR32 UC3 ARM7

Hardware divider Yes No

DSP Instructions Yes, single-cycle No

Endianess Big Little

Bus architecture Harvard Von Neumann

Ram Location Closely coupled to the CPU
with additional bus slave
interface

Ordinary bus slave

Memory Protection
Unit

Yes No

IRQ Latency Max 16 cycles Max 42 cycles

IRQ Levels 4+NMI 2 (IRQ and FIQ)

Autovectored IRQs Yes No

IRQ contexts Stacked Banked

Atomical bit bang
support

Yes No

Modeless instruction
set

Yes No, ARM® or Thumb mode

Memory map Main regions defined by
architecture

Unspecified

High-speed CPU local
bus

Yes No

Dhrystone MIPS/MHz 1.38 0.5 – 0.7

32075B-AVR-03/08

 AVR32007

 5

32075B-AVR-03/08

2.1 Digital Signal Processing
Hardware divider and DSP instructions greatly improve the computational power of
AVR32 UC3 devices. The DSP instructions provide optional saturation and rounding,
and are able to produce a 48-bit MAC result in a single clock cycle. This is useful in
modern microcontroller applications requiring more signal processing power than
traditional applications.

2.2 Endianness
AVR32 is a big-endian architecture, whereas the ARM7 is a little-endian architecture.
This is usually transparent to the user, but can be an issue when porting applications
from an ARM processor to an AVR32. Endianess conversion problems arise when
the application accesses the same data as different data types, for example byte and
word. Such applications will behave differently on a big-endian machine than on a
little-endian one.

2.3 Bus architecture
AVR32 UC3 uses a Harvard bus architecture with a closely coupled RAM, whereas
ARM7 uses a von Neumann bus architecture with the RAM placed on the system
bus. A Harvard system is more efficient, since separate buses for instruction and data
are provided. In an ARM7, a single memory interface is shared between instruction
fetch and data access, causing bus contention and pipeline stalls. Furthermore,
placing the RAM close to the CPU reduces memory access latency and power
consumption, since the system bus does not need to be driven for ordinary memory
accesses.

2.4 Memory Protection Unit
AVR32 UC3 has a Memory Protection Unit (MPU) that allows the programmer to set
up different access privileges in different regions of memory. This allows the
programmer to make more robust code. ARM7 has no such mechanism. The MPU
can be left disabled if no special memory protection is needed.

2.5 Interrupt controller
AVR32 UC3 has a dedicated interrupt controller supporting a large number of
interrupt sources. Each source is assigned a programmable priority and auto vector
address. This allows the CPU to jump directly to the correct IRQ handler address,
saving the cycle and code size overhead for jump tables needed by CPUs that do not
support auto vectoring. The IRQ latency in AVR32 UC3 is shorter than in an ARM7.
When an IRQ is received by an AVR32 UC3, registers R8-R12 and LR are
automatically stored to stack so that they are available for the interrupt routine.
AVR32 also provides support for more IRQ levels than ARM7, so that making time-
critical systems with many interrupt sources is easier.

2.6 Atomic bit-operations
AVR32 UC3 also provides instruction for setting, clearing and toggling bits in memory
atomically. Such atomic memory access instructions are not provided by the ARM7
instruction set.

6 AVR32007
32075B-AVR-03/08

2.7 16- / 32-bit execution modes,
ARM7 provides two execution modes, ARM and Thumb, each with a dedicated
instruction set. ARM mode uses 32-bit instructions, and Thumb uses 16-bit
instructions. Special mechanisms are used to switch between ARM and Thumb
mode. ARM instructions are typically used in applications tuned for maximum
performance, and Thumb code is usually used in applications tuned for minimal code
size. But since Thumb mode only provides a limited subset of the ARM instruction
set, applications such as DSP and floating-point libraries usually exclusively use ARM
code.

In AVR32, there is only one instruction set, consisting of both 16- and 32-bit
instructions that can be mixed freely without any mode-changing instructions between
them. The compiler can therefore select an optimum mix of 16 and 32-bit instructions,
resulting in both fast and code-compact code.

Switching between Thumb and ARM-mode in an ARM7 architecture includes a cycle-
penalty, AVR32 does not have this limitation.

2.8 Memory Map
ARM7 has a flat and unstructured memory map. AVR32 UC3 separates the memory
map into 4 regions with slightly different properties:
• CPU RAM
• CPU local bus
• Program memory (flash)
• High-speed system bus
Consult the AVR32 UC3 Technical Reference Manual for details

To summarize, all these differences makes the AVR32 UC3 twice as fast as an ARM7
in the commonly used Dhrystone benchmark. For real applications, in silicon with
code executing from Flash, the results are often higher than x2. Read application note
AVR32006: “Getting started with GCC for AVR32” for more information on compiler
optimizations and the Dhrystone benchmark in particular.

3 Software structure
Usually, code is written in a layered fashion. A set of driver routines encapsulates and
abstracts the processor hardware from the user software. As an example, a driver
written in C can abstract the register interface and logic of a USART peripheral.
These low-level drivers can be provided in libraries made by compiler or device
vendors. The drivers can again be used by operating systems (OS) that provide
another level of abstraction to the user application.

Porting applications running on an OS from ARM7 to AVR32 UC3 usually is simple:
Just get the AVR32 UC3 version of the operating system and recompile the
application written in C-code. The OS usually provide a hardware-independent API
that the user application interfaces to. Usually, a small amount of machine-specific
code must also be set up, such as PLL configuration and clock systems.

 AVR32007

 7

32075B-AVR-03/08

For applications not relying on an OS, the low-level device drivers must be ported
when migrating from an ARM7 to an AVR32 UC3.

Atmel provides a free of charge, AVR32 Software Framework, which includes drivers
for all peripherals in the UC3 devices. Refer to application note AVR32xxx “AVR32
Software Framework”.

This software framework greatly simplifies the work of porting software to AVR32,
providing pre-made peripheral drivers and many assembly-tuned library routines for
DSP and other applications.

3.1 Non-portable code constructs
Usually, most of an application is written in a high-level language (HLL) like C. Porting
such code is usually easy, it just has to be recompiled. However, code using compiler
intrinsics or pragmas, or inline assembly code may have to be rewritten when porting
them from an ARM7 to an AVR32. In most cases, the mapping from ARM7 to AVR32
intrinsics or inline assembly is trivial.

3.2 Tuning code for the AVR32 UC3
Compiling HLL code written in C usually generates very good code. There are
however applications where writing critical parts of the code in assembly language
results in large performance gains. This chapter describes AVR32 instructions and
tricks that can be used to increase the performance of your application. Some of
these are exploited automatically by a compiler, others may have to be used manually
by writing assembly code.

3.3 Arithmetic
AVR32 UC3 has more powerful arithmetical capabilities than an ARM7. AVR32 UC3
has a DSP instruction set that supports single-cycle multiply and multiply-accumulate
with optional saturation. Saturating add and sub instructions are also provided, as
well as instructions for reformatting numbers.

3.4 Digital Signal Processing
Assembly code must usually be written in order to use the DSP instructions, as they
are hard for a compiler to infer from C-code.

Atmel provides a free-of-charge DSP software library in the “AVR32 UC3 Software
Framework” containing a large number of hand-optimized DSP library routines like
filters and FFTs that can be called directly from your C-code.

3.5 Hardware Divide
AVR32 UC3 also provides a divide instruction. This directly replaces the software
divide function used in ARM7 code. ARM7 assembly code, performing software
division should be rewritten to use the AVR32 hardware divider.

In ARM mode, arithmetical instructions executed by an ARM7 can use a shifter
operand, i.e. one of the operands may be shifted an arbitrary amount. Such function
is generally not provided in the AVR32 instruction set, therefore an ARM instruction
with shifter operand may have to be replaced with one shift instruction and one
arithmetical instruction in AVR32 UC3. Note that the AVR32 instruction set has a

8 AVR32007
32075B-AVR-03/08

subset of arithmetical instructions (like add and sub) that provide a limited shifter
operand. This usually covers the most frequent needs for a shifter operand.

3.6 Bit manipulation
AVR32 UC3 has powerful instructions for performing bit manipulations. The bitfield
instructions bfins and bfext allows extraction of a bitfield from one register and
inserting it into a specified position in another register. This is very useful for example
in protocol handling, where bitfields must be extracted or inserted into packets.

The swap instruction allows swapping of bytes in a register, and the set bit and clear
bit in register (sbr, cbr) instructions allows setting and clearing of a bit in a register.

The bit load and bit store (bld, bst) instructions are useful for copying a bit in a
register or a status register flag to a bit in another register.

An ARM7 will have to perform such bit manipulations using multiple ARM or Thumb
instructions.

3.7 Data transfer
AVR32 UC3 provides the usual mix of byte, halfword and word data transfer
instructions found in an ARM7. AVR32 UC3 also has instructions for load and store of
multiple registers, similar to ARM7. AVR32 UC3 additionally provides a set of
instructions not found in ARM7.

3.8 Endianness
Endianess-convertion instructions like load-and-swap and store-and-swap (ldswp,
stswp) swaps bytes in a word before storing them to memory, or swaps them after
reading them from memory. This is useful as many systems contain peripherals of
different endianess.

The load-and-insert instruction (ldins) loads a byte or halfword from memory and
inserts it into a bitfield in a register. This is useful for packing data for example in
protocol handling.

Instructions for doubleword access, both load and store.

3.9 Conditional instructions
In the full ARM instruction set, most instructions are conditionally executed based on
a condition code field in the instruction opcode. Such conditional execution is not
supported when in Thumb mode.

In AVR32, the most frequently used instructions, like add, sub and, or, eor, loads and
stores, have conditional variants. Conditional ARM code can usually be mapped to
conditional AVR32 code with little effort. However, in some cases, a single conditional
ARM instruction may have to be synthesized by two AVR32 instructions: One
unconditional and one conditional one. As an example, AVR32 provides no
conditional multiply instruction. A conditional ARM multiply will therefore have to be
mapped to an unconditional AVR32 multiply placing the result in a dummy register,
and a conditional move from the dummy register to the target register.

 AVR32007

 9

32075B-AVR-03/08

3.10 Atomical memory access
AVR32 UC3 provides instructions for atomically setting, clearing and toggling a bit in
a memory location. No equivalent exists in the ARM7. AVR32 also provides a
conditional store instruction, useful for semaphores between processes and in
multiprocessor systems.

3.11 CPU local bus
AVR32 UC3 has a CPU local bus, operating at CPU speed. The local bus allows
peripherals and subsystems to be closely connected to the CPU and accessed very
efficiently. Which systems are placed on the local bus varies from device to device,
but typically at least the General-Purpose IO (GPIO) ports are placed on the local
bus. This allows the programmer to bit bang GPIO pins at the same frequency as the
CPU clock.

3.12 Hardware configuration
The bus system should be set up so that the AVR32 UC3 can operate optimally.
Make sure that the bus matrix is set up so that the flash controller bus slave uses the
“Last Default Master” arbitration mode (set the DEFMSTR_TYPE field in the SCFG
register associated with the flash controller slave to Last Default Master). This
optimizes bus accesses from the instruction fetch interface to the flash program
memory.

Since the CPU RAM is shared between the CPU and the system bus, arbitration
hardware is implemented. CPUCR should be programmed to suit the arbitration
scheme to suit different applications, balancing CPU and bus accesses to the CPU
RAM.

3.13 Compiler
Make sure that the correct compiler and linker switches are used when compiling and
linking the code. Compilers and toolchains are continuously changed and improved,
so switches may be added between versions.

Refer to application note AVR32006 “Getting started with GCC for AVR32” for C-
code, compiler and linker optimization techniques.

4 Pitfalls when porting code to AVR32 UC3
This chapter lists some of the most common pitfalls when porting code from ARM7 to
AVR32 UC3.

4.1 Endianess
ARM7 is a little-endian architecture, whereas AVR32 is big-endian. This is usually
transparent to the programmer, but is important when accessing the same data with
accesses of different data size, e.g. byte and word. Consider storing the word
0xaabb_ccdd to address 0 in memory. The following data is returned when reading
this data back as 4 bytes.

10 AVR32007
32075B-AVR-03/08

Table 4-1.
Byte load from address AVR32 UC3 ARM7

0 0xaa 0xdd

1 0xbb 0xcc

2 0xcc 0xbb

3 0xdd 0xaa
Endianess issues can also complicate accesses to aggregate data structures as
union and struct if they are accessed in creative ways.

4.2 Cycle correctness
Just to state the obvious, any ARM7 code that assumes a specific cycle behavior
(such as bit banging for communication protocols) may not work directly out of the
box when ported to other architectures such as AVR32 since the instruction and bus
timings may be different..

5 Conclusion
Porting code from an ARM7 to an AVR32 UC3 is usually very simple. Atmel provides
a complete software framework with drivers to make peripheral interfacing easy, and
hand-optimized library routines to benefit from the powerful AVR32 instruction set.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. ARM® and others are registered trademarks or trademarks of ARM Ltd. Other terms and
product names may be trademarks of others.

32075B-AVR-03/08

	1 Introduction
	1.1 Overview of AVR32 UC3 CPU
	1.2 Overview of the AVR32 MCU bus architecture
	1.3 Pipeline Overview

	2 Comparison between AVR32 UC3 and ARM7
	2.1 Digital Signal Processing
	2.2 Endianness
	2.3 Bus architecture
	2.4 Memory Protection Unit
	2.5 Interrupt controller
	2.6 Atomic bit-operations
	2.7 16- / 32-bit execution modes,
	2.8 Memory Map

	3 Software structure
	3.1 Non-portable code constructs
	3.2 Tuning code for the AVR32 UC3
	3.3 Arithmetic
	3.4 Digital Signal Processing
	3.5 Hardware Divide
	3.6 Bit manipulation
	3.7 Data transfer
	3.8 Endianness
	3.9 Conditional instructions
	3.10 Atomical memory access
	3.11 CPU local bus
	3.12 Hardware configuration
	3.13 Compiler

	4 Pitfalls when porting code to AVR32 UC3
	4.1 Endianess
	4.2 Cycle correctness

	5 Conclusion

